$(2 / 3)(\mathrm{a}+\mathrm{b}+\mathrm{c})<\mathrm{u}<\mathbf{a}+\mathrm{b}+\mathbf{c}($ Posted $)$
https://www.linkedin.com/groups/8313943/8313943-6368766061759860737
Let $a, b, c>0$. Show that the equation

$$
x^{3}-\left(a^{2}+b^{2}+c^{2}\right) x-2 a b c=0
$$

has a unique positive root u which satisfies

$$
\frac{2(a+b+c)}{3}<u<a+b+c
$$

Solution by Arkady Alt, San Jose, California, USA.
Let $\varphi(x):=1-\frac{2 a b c}{x^{3}}-\frac{a^{2}+b^{2}+c^{2}}{x^{2}}, x \in \mathbb{R} \backslash\{0\}$ and $F(x):=x^{3}-\left(a^{2}+\right.$ $\left.b^{2}+c^{2}\right) x-2 a b c$.

Since $x=0$ isn't solution of the equation $F(x)=0$ then $F(x)=0 \Longleftrightarrow$ $\varphi(x)=0$ for any $x \neq 0$.

Since $\varphi\left(\sqrt{a^{2}+b^{2}+c^{2}}\right)<0, \lim _{x \rightarrow \infty} \varphi(x)=1$ and function $\varphi(x)$ is continuous and increasing
on $(0, \infty)$ then equation $F(x)=0$ has a unique positive root $u \in\left(\sqrt{a^{2}+b^{2}+c^{2}}, \infty\right)$.
Noting that in case $a=b=c$ equation $F(x)=0$ becomes $x^{3}-3 a^{2} x-2 a^{3}=$ $0 \Longleftrightarrow(x-2 a)(a+x)^{2}=0$
we will prove that $u \in\left[\frac{2 s}{3}, s\right)$, where $s:=a+b+c$. Let $p:=a b+b c+c a, q:=$ $a b c$.

Since by AM-GM inequality $s \geq 3 q^{1 / 3}, p \geq 3 q^{2 / 3}$ then $F(s)=s^{3}-\left(s^{2}-2 p\right) s-$ $2 q=$
$2(p s-q) \geq 2(9 q-q)=16 q>0$.
Also, since $9 q \geq 4 p s-s^{3}$ (Schure Inequality $\sum_{c y c} a(a-b)(a-c) \geq 0, a, b, c>$ 0 in $s, p, q-$ notation)
and $s^{2} \geq 3 p$ then $27 F\left(\frac{2 s}{3}\right)=27\left(\left(\frac{2 s}{3}\right)^{3}-\left(s^{2}-2 p\right) \cdot \frac{2 s}{3}-2 q\right)=2\left(18 p s-27 q-5 s^{3}\right)=$
$-2\left(2 s\left(s^{2}-3 p\right)+3\left(9 q-4 p s+s^{3}\right)\right) \leq 0$.
Note in the latter inequality equality holds iff $s^{2}=3 p \Longleftrightarrow a=b=c$.
Thus, $\frac{2(a+b+c)}{3} \leq u<a+b+c$ and equality holds iff $a=b=c$.
Remark.
Additional information about cubic equation $x^{3}-\left(a^{2}+b^{2}+c^{2}\right) x-2 a b c=$
0 , which has
relation to geometry, you can find by the followig links:

1. Article "Independent representation of an acute triangle with application to
inequalities",Arkady Alt, Mathemathical Reflections n.4,2009.
http://www.equationroom.com/Publications/Mathematical\ Reflections/Independent\%
20parametrization\%20of\%20an\%20acute\%20triangle\%20and\%20it's\%20application\%20n.4,2009.pdf
2. Problem 5337 two solutions, SSMA,Problem section.
http://ssma.play-cello.com/wp-content/uploads/2016/03/May-2015.pdf
3. Problem 3395 with solution, CRUX vol. 35, n. 8
https://cms.math.ca/crux/v35/n8/page520-535.pdf.
4. Problem11443 with solution in American Mathematical Monthly Vol.118,n.3,March 2011,
